搜贴子 搜作者(贴子) 搜作者(回复)
重庆家教网首页 | 
社区首页 > 意见反馈 > 浏览
楼主
含有字母系数的一元一次方程
  9.5 含有字母系数的一元一次方程(1)

教学目的
1.使学生会解含有字母系数的一元一次方程。
教学分析
重点:含字母系数的一元一次方程的解法。
难点:含字母系数的一元一次方程的解法。
教学过程
一、复习
1.什么叫方程?什么叫方程的解?什么叫解方程?
2.试述一元一次方程的意义及解一元一次方程的步骤。
3.什么叫分式?分式有意义的条件是什么?
二、新授
1.含有字母系数的一元一次方程
引例:一数的a倍(a≠0)等于b,求这个数。
用x表示这个数,根据题意,可得方程
ax=b(a≠0)
在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。
含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。
例如:解方程5x+6=3x+10与解方程ax+b=cx+d。
解:移项,5x-3x=10-6, ax-cx=d-b,
合并同类项, 2x=4, (a-c)x=d-b,
∴ x=2。 当a-c≠0时,
x= .
可以看出,上述两个方程的解法及其步骤基本相同。只是最后一步,从2x=4与(a-c)x=d-b中求出x不同,其中2≠0是很明显的,所以得x=2。而a-c必须指明a-c≠0时x= .
例1 解方程ax+b2=bx+a2(a≠0).
解: 移项,得 ax-bx=a2-b2,
合并同类项,得 (a-b)x=a2-b2。
因为a≠b,所以a-b≠0,方程两边同除以a-b,得
x= , ∴x=a+b.
注意:方程的解是分式时,一般要化成最简分式或整式。
例2 解方程 。
解:去分母,得b(x-b)=2ab-a(x-a),
去括号,得bx-b2=2ab-ax+a2,
移项,得ax+bx=a2+2ab+b2,
分解因式,得(a+b)x=(a+b)2。
∵a+b≠0,∴x=a+b。
三、练习
练习:P90中练习1,2,3,4。
四、小结
本课内容:含有字母系数的一元一次方程的解法。
五、作业
作业:P93中习题9.5 A组7,8,9。
需要注意的几个问题
1、考虑到学生的年龄特征,在解含有字母系数的方程时,一般不要求学生讨论方程的有解条件,也不要求验根。然这并非说明解字母已知数方程时不需要去研究方程的有解条件。这一点教师应当明确。
2、对于例题、习题中的某些公式的实际意义,教师应当掌握,但不一定向学生讲解。习题中的B组题对全体学生不作硬性要求,对某些数学爱好者可作为选作题。
  9.5 含有字母系数的一元一次方程(2)
教学目的
1.使学生会进行简单的公式变形。
教学分析
重点:含字母系数的一元一次方程的解法。
难点:含字母系数的一元一次方程的解法及公式变形。
教学过程
一、复习
1.试述一元一次方程的意义及解一元一次方程的步骤。
2.什么叫分式?分式有意义的条件是什么?
二、新授
1.公式变形
引例:汽车的行驶速度是v(千米/小时),行驶的时间是t(小时),那么汽车行驶的路程s(千米)可用公式
s=vt                 ①
来计算。
有时已知行驶的路程s与行驶的速度v(v≠0),要求行驶的时间t。因为v≠0,所以
t= 。                ②
这就是已知行驶的路程和速度,求行驶的时间的公式。
类似地,如果已知s,t(t≠0),求v,可以得到
v= 。                ③
公式②,③有时也可分别写成t=sv -1;v=st-1。
以上的公式①,②,③都表示路程s,时间t,速度v之间的关系。当v、t都不等于零时,可以把公式①变换成公式②或③。
像上面这样,把一个公式从一种形式变换成另一种形式,叫做公式变形,公式变形往往就是解含有字母系数的方程。
例3 在v=v0+at中,已知v、v0、a且a≠0。求t。
解:移项,得v-v0=at。
因为a≠0,方程两边都除以a,得 。
例4在梯形面积公式S= 中,已知S、b、h且h≠0,求a。
解:去分母,得2S=(a+b)h, ah=2S-bh
因为h≠0,议程两边都除以h,得

三、练习
P92中练习1,2,3。
四、小结
公式变形的实质是解含字母系数的方程,要求的字母是未知数,其余的字母均是字母已知数。如例3就是把v、v0、a当作字母已知数,把t当作未知数,解关于t的方程。
五、作业 作业:P93中习题9.5 A组7,8,9。
另:需要注意的几个问题
1、考虑到学生的年龄特征,在解含有字母系数的方程时,一般不要求学生讨论方程的有解条件,也不要求验根。然这并非说明解字母已知数方程时不需要去研究方程的有解条件。这一点教师应当明确。
2、对于例题、习题中的某些公式的实际意义,教师应当掌握,但不一定向学生讲解。习题中的B组题对全体学生不作硬性要求,对某些数学爱好者可作为选作题。
作者:李老师(957053)07-10-28 01:30回复此贴
回复内容:
百分·重庆家教网 ©2003-2015